Table A1.	ICD codes o	f causes o	f death selected	for the anal	ysis

Causes of death	ICD-9 codes	ICD-10 codes					
Ischemic heart disease	410–414	120–125					
Cerebrovascular disease	430–438	160–169					
Lung cancer	162 ¹	C33–C34 ¹					
Liver cirrhosis ²	571.0–571.3, 577.0–577.1 ³	K70, K85–K86.0 ³					
Road traffic accidents	E800-E829 ⁴	V01–V89, Y85 ⁴					
Cardiovascular diseases	390–459	100–199					
Cancers	140–239	C00–D48					
Other diseases	Rest (001–799)	Rest (A00–R99)					
External causes	E800-E999	V01–Y98					
¹ 162–163, 165 (ICD-9) and C33–C34, C39 (ICD-10) in most studies in the 1990s							
² Alcoholic cirrhosis of liver and p							
³ Not available for Estonia and Li							
⁴ In Barcelona, England, Estonia accidents were combined with o E800–E848 (ICD-9) and V01–V99, Y							

1990s			2000s		
Country	Design	Follow-up (years)	Country	Design	Follow-up (years)
Finland	age at baseline	10	Finland	age at death	7
Sweden	age at baseline	10	Sweden	age at baseline	6
Norway	age at baseline	10	Norway	age at baseline	5
Denmark	age at baseline	5	Denmark	age at baseline	5
England &W	age at baseline	5.5	England &W	age at death	5
Belgium	age at baseline	5	Belgium	age at baseline	2
France	age at baseline	10	France	age at death	6
Switzerland	age at baseline	10	Switzerland	age at baseline	5
Barcelona	CS linked	7	Barcelona	CS linked	7
Basque C	age at death	5	Basque C	age at death	5
Madrid	CS linked	1.5	Madrid	CS linked	1.5
Turin	age at baseline	10	Turin	age at death	5
Hungary	CS unlinked	4	Hungary	CS unlinked	4
Lithuania	CS unlinked	3	Lithuania	CS unlinked	3
Estonia	CS unlinked	5	Estonia	CS unlinked	5

Table A2. Data design and length of follow-up of Eurothine and EURO-GBD-SE datasets, with a note on the method of adjustment for age at baseline

Note: In longitudinal studies with classification by age at baseline, people are not allowed to move into the next age category as they grow older, and therefore age-specific mortality estimates obtained in these studies will be upwardly biased as compared to studies with classification by age at death. This upward bias will be larger with longer follow-up periods (and is generally absent in cross-sectional (CS) linked or unlinked studies). For longitudinal studies with classification by age at baseline we therefore developed an adjustment method based on the proportion of person years spent outside the correct age interval and the observed increase of the death rate by age. This method was validated with 2000s mortality data for three countries that could provide both data classified by age at baseline and age at death (Finland, France, and Sweden), and was found to work satisfactorily (27). As we did not have 1990s mortality data classified both by age at baseline and age at death, we could not directly validate this method for this time-period in which length of follow-up was generally larger. We were, however, able to compare our adjusted results with data from the Human Mortality Database (http://www.mortality.org/), and again found the method to work well, although the upward bias could not completely be removed for countries with long follow-up periods. We therefore restrict analyses of changes in absolute levels of mortality between the 1990s and 2000s to within-country comparisons of low and high educated, which are unlikely to be substantially biased, because the upward bias will have roughly the same effects on the low and high educated within a single country.

Table A3. Age-standardized mortality rates (per 100 000 person-years), by country, educational group, time-period and sex

	Country	Education	1		-					
			1990s 2000s			000s	1990s 2000s			
			ASMR	95%-CI	ASMR	95%-CI	ASMR	95%-CI	ASMR	95%-CI
North	Finland	low	1438	(1428–1447)	1076	(1065–1086)	613	(608–618)	490	(483–496)
		mid	1158	(1143–1173)	808	(796–819)	471	(463–480)	340	(333–347)
		high	798	(784–812)	511	(501–522)	399	(389–409)	260	(253–267)
	Sweden	low	944	(938–949)	754	(747–761)	531	(527–534)	469	(464–474)
		mid	745	(739–751)	573	(566–579)	409	(405–414)	344	(340–349)
		high	537	(528–546)	396	(388–404)	285	(279–291)	246	(240–252)
	Norway	low	1254	(1243–1265)	888	(873–903)	630	(624–636)	503	(493–513)
		mid	939	(930–948)	595	(586-605)	458	(452–464)	333	(327–340)
		high	676	(662–689)	381	(369–392)	359	(347–370)	241	(231–251)
	Denmark	low	1142	(1130–1154)	1040	(1028–1052)	708	(700–715)	654	(646-662)
		mid	940	(928–953)	793	(782-803)	540	(529–551)	472	(463-481)
		high	657	(642–673)	534	(521–547)	443	(430–457)	362	(351-373)
West	England & Wales	low *	947	(924–971)	728	(707–748)	552	(536–568)	468	(453–484)
		high	583	(536-631)	472	(434–510)	357	(314–401)	307	(276-338)
	Belgium	low	1035	(1028–1042)	846	(836-855)	485	(481–490)	424	(418-430)
	U	mid	799	(786–812)	633	(618–648)	382	(372–391)	336	(325-347)
		high	628	(615-642)	461	(448–474)	353	(342–364)	274	(263–284)
	France	low	1099	(1074–1124)	939	(908–971)	413	(400–425)	369	(353–385)
		mid	803	(771–835)	671	(642–700)	303	(281–325)	280	(259–300)
		hiah	509	(466–552)	412	(374–451)	251	(216–285)	220	(190-251)
	Switzerland	low	1283	(1271–1295)	834	(819-850)	505	(501–510)	365	(358-371)
		mid	895	(887–902)	549	(542-557)	390	(385-395)	259	(244–274)
		hiah	647	(637–656)	368	(359-376)	352	(339-365)	235	(224–246)
South	Barcelona	low	889	(877–902)	777	(765–789)	327	(321–333)	303	(297-309)
		mid	707	(684–730)	576	(556-596)	266	(250-281)	239	(225-252)
		hiah	546	(526-567)	485	(469–501)	241	(224–257)	221	(209-233)
	Basque	low	824	(812–836)	759	(747–770)	302	(296-309)	285	(279-292)
	Lacque	mid	691	(663–718)	597	(575-619)	270	(249-291)	253	(235-270)
		high	587	(558-615)	525	(503-548)	252	(230-274)	232	(215-249)
	Madrid	low	979	(962-996)	861	(846-876)	371	(362-379)	326	(319-334)
	induitd	mid	866	(828-903)	721	(693-750)	374	(300-348)	313	(293-332)
		high	661	(631–692)	576	(552-600)	287	(262-313)	257	(238-276)
	Turin	low	1089	(1073–1105)	678	(662–695)	516	(507-525)	322	(312-332)
		mid	836	(806-866)	472	(448-496)	442	(419-464)	293	(273-313)
		high	705	(668–742)	404	(373-434)	397	(361–432)	270	(241-299)
East	Hungary	low	2426	(2414–2438)	2424	(2411–2437)	949	(943-955)	872	(866-878)
_4.01		mid	1515	(1494–1535)	1128	(1117–1139)	868	(852-884)	525	(517-533)
		high	1039	(1020–1059)	728	(714–741)	598	(578-618)	461	(447-474)
	Lithuania **	low	1622	(1599–1644)	2315	(2281-2350)	640	(628-651)	924	(903-945)
		mid	1733	(1205–1260)	1367	(1344–1389)	488	(472–504)	444	(432-455)
		hiah	787	(749-824)	678	(651-705)	401	(374-427)	274	(259-289)
	Estonia	low	2014	(1985-2044)	2567	(2528-2606)	831	(816-846)	1053	(1031-1075)
		mid	1621	(1584–1658)	1904	(1871–1936)	722	(702-742)	694	(678–710)
		hiah	1200	(1150-1249)	921	(895-968)	554	(521-586)	395	(375-416)
			1200	(1150 12-5)	551	(000 000)	554	(321 300)	333	(373 +10)
	* low and mid educate	d combined								
	** age 30-69 years									
	ASMP = ago standardi	zod mortality r		- 05% confidence	intonal					

Table A4. Sensitivity analysis: effect of combining low and mid educated in one group. Rate Ratios of mid-low versus high educated, 1990s and 2000s.

	Relative risks										
			MEN				WOMEN				
	Country	Education	1990s		2	2000s		1990s		2000s	
			RR	95%-CI	RR	95%-CI	RR	95%-CI	RR	95%-CI	
North	Finland	low-mid	1.87	(1.83–1.90)	1.89	(1.85–1.93)	1.49	(1.45–1.53)	1.62	(1.57–1.67)	
		high	1		1		1		1		
	Sweden	low-mid	1.63	(1.60–1.66)	1.68	(1.64–1.72)	1.71	(1.67–1.75)	1.63	(1.59–1.67)	
		high	1		1		1		1		
	Norway	low-mid	1.64	(1.61–1.68)	1.87	(1.81–1.93)	1.54	(1.49–1.59)	1.68	(1.61–1.76)	
		high	1		1		1		1		
	Denmark	low-mid	1.63	(1.59–1.68)	1.76	(1.72–1.81)	1.5	(1.45–1.55)	1.65	(1.60–1.70)	
		high	1		1		1		1		
West	England &W	low-mid	1.65	(1.51–1.80)	1.55	(1.43–1.69)	1.55	(1.36–1.75)	1.52	(1.36–1.69)	
		high	1		1		1		1		
	Belgium	low-mid	1.61	(1.57–1.65)	1.74	(1.69–1.79)	1.34	(1.30–1.39)	1.48	(1.42–1.55)	
		high	1		1		1		1		
	Switzerland	low-mid	1.59	(1.56–1.61)	1.7	(1.66–1.74)	1.27	(1.23–1.32)	1.28	(1.22–1.35)	
		high	1		1		1		1		
South	Barcelona	low-mid	1.57	(1.50–1.63)	1.5	(1.45–1.56)	1.39	(1.29–1.49)	1.34	(1.26–1.42)	
		high	1		1		1		1		
	Basque	low-mid	1.44	(1.36–1.51)	1.43	(1.37–1.50)	1.23	(1.12–1.35)	1.35	(1.24–1.46)	
		high	1		1		1		1		
	Madrid	low-mid	1.5	(1.43–1.58)	1.5	(1.43–1.57)	1.34	(1.22–1.47)	1.28	(1.18–1.39)	
		high	1		1		1		1		
	Turin	low-mid	1.51	(1.43–1.59)	1.53	(1.41–1.66)	1.25	(1.14–1.37)	1.19	(1.07–1.33)	
		high	1		1		1		1		
East	Hungary	low-mid	2,00	(1.96–2.04)	2.51	(2.47–2.56)	1.58	(1.53–1.64)	1.79	(1.73–1.84)	
		high	1		1		1		1		
	Lithuania [*]	low-mid	2,00	(1.90-2.10)	2.42	(2.33–2.53)	1.47	(1.37–1.58)	1.99	(1.87–2.11)	
		high	1		1		1		1		
	Estonia	low-mid	1.68	(1.61–1.75)	2.31	(2.22–2.41)	1.44	(1.36–1.54)	1.99	(1.88-2.10)	
		high	1		1		1		1		
	In bold : no overlap in 95% CI of RR between 2000s and 1990s										
	* 30–69 years										